This article demonstrates the method of simulating the calibration curve of hydrogen atomic spectrum using the Lorentz dispersion relation. 本文介绍了如何利用折射率的洛伦茨色散关系拟合氢原子光谱实验的定标曲线的方法。
This paper the idea of theory of relativity and the Maxwell equation to deduce the transform relation of electro-magnetic field in different inertial frame. Thus it explains the essence of Coulomb force and Lorentz force, and discusses the problem of electro-magnetic induction. 本文从相对论的观点出发,由Maxwell方程导出了不同的惯性系之间电磁场量的变换关系,从而解释了Coulomb力与Lorentz力的本质,并讨论了电磁感应问题。
A class of multiplicatively closed Subsets S_2 that is isomorphic to a class of unitary matrix groups U_2 is given by Hyperbolic Euler transformation in this paper. The relation of linear transformation to Lorentz transformation on Hyperbolic plane H is also illustrated in detail. 本文利用双曲Euler公式[1],给出了双曲平面H上的一类乘闭子集S2与一类幺正矩阵群U2[2]同构,证明并具体刻划了H平面上的线性变换与Lorentz变换的关系。
According to Lorentz transformation of electromagnetic fields, we discuss relation of transformation for electris-like field, magnetic-like field and torsion field. 按照电磁场的不变量,可以把电磁场分为四类,即自电场、类电场、类磁场和扭转场。本文将根据电磁场的变换关系,讨论类电场、类磁场和扭转场的相对论变换特性。
However, because of the introduction of the Lorentz invariance violation, we should modify the dispersion relation of the neutrino besides the energy-dependence mixing element, which means there may be superluminal neutrinos. 然而,由于Lorentz对称破缺的引入,不仅使得混合矩阵元是能量依赖的,同时中微子能量-动量色散关系也需要作出修正,即可能出现超光速中微子。